2.5A, 6V, 1MHz # **Synchronous Step-Down Converter** ### **DESCRIPTION** The JW®5222N is a current mode monolithic buck switching regulator. Operating with an input range of 2.5V-6V, the JW5222N delivers 2.5A of continuous output current with integrated P-Channel and N-Channel MOSFETs. The internal synchronous power switches provide high efficiency. At light loads, the regulator operates in low frequency to maintain high efficiency and low output ripples. Current mode control provides tight load transient response and cycle-by-cycle current limit. The JW5222N guarantees robustness with hiccup output short-circuit protection, FB short-circuit protection, start-up current run-away protection, input under voltage lockout and hot-plug in protection, and thermal protection. The JW5222N provides output power good indication which is only available in SOT23-6 package. The JW5222N is available in 5-pin SOT23-5 or 6-pin SOT23-6 package, which provides a compact solution with minimal external components. Company's Logo is Protected, "JW" and "JOULWATT" are Registered Trademarks of JoulWatt technology Inc. ### **FEATURES** - 2.5V to 6V operating input range - Up to 2.5A output current - Up to 94% peak efficiency - High efficiency at light load - Internal Soft-Start - 1MHz switching frequency - Input under voltage lockout - Hot-plug in protection - Short circuit protection - Thermal protection - Output POK indication (available in SOT23-6 package) - RoHS Compliant and Halogen Free - Available in SOT23-5/SOT23-6 package # **APPLICATIONS** - 5V or 3.3V Point of Load Conversion - Set Top Boxes - Telecom/Networking Systems - Storage Equipment - GPU/DDR Power Supply ### TYPICAL APPLICATION ### **ORDER INFORMATION** | DEVICE ¹⁾ | PACKAGE | TOP MARKING ²⁾ | |---------------------------|---------|---------------------------| | IMESSANCOTA #TDDDE | COT22 F | JWCM□ | | JW5222NSOTA#TRPBF | SOT23-5 | YW□□□ | | JW5222NSOTB#TRPBF SOT23-6 | JWCL□ | | | | 30123-0 | YW□□□ | #### Notes: # **PIN CONFIGURATION** ### **TOP VIEW** # ABSOLUTE MAXIMUM RATING1) | All Pins | 0.3V to 7.0V | |--|--------------------------------| | Junction Temperature. ^{2) 3)} | 150°C | | Lead Temperature | 260°C | | ESD Susceptibility (Human Body Model) | | | Dynamic Vin and SW Voltage | 1.7V for 40ns to 7.1V for 70ns | ### RECOMMENDED OPERATING CONDITIONS | Input Voltage VIN | | 2.5V to 6V | |--------------------|---|------------------| | Output Voltage Vou | t | 0.6V to Dmax*VIN | # THERMAL PERFORMANCE⁴⁾ | Absolute Max Storage
Temp. | Recommended
Operating
Junction Temp.
Range | Recommended
Max Case Temp. T _c
(°C) | Abs. Max Junction Temp. T_j (°C) | Recommended Max
Power Loss
P _D @25°C (W) | |-------------------------------|---|--|------------------------------------|---| | -65°C to 150°C | -40°C to 125°C | 122 | 150 | 0.45 | | R _{⊕JC}
(°C/W) | R _{θJA}
(°C/W) | R _{θJB}
(°C/W) | ψлт
(°С/W) | ψ _{ЈВ} | | 130 | 220 | 36.1 | 2.3 | 35.3 | #### Note: - 1) Exceeding these ratings may damage the device. - 2) The JW5222N guarantees robust performance from -40°C to 150°C junction temperature. The junction temperature range specification is assured by design, characterization and correlation with statistical process controls. - 3) The JW5222N includes thermal protection that is intended to protect the device in overload conditions. Thermal protection is active when junction temperature exceeds the maximum operating junction temperature. Continuous operation over the specified absolute maximum operating junction temperature may damage the device. - 4) Measured on JESD51-7, 4-layer PCB. # **ELECTRICAL CHARACTERISTICS** | VIN=5V, T_A =25 C , unless otherwise | e stated. | | | | | | |--|--------------------------|--|-------|-------|-------|------------| | Item | Symbol | Condition | Min. | Тур. | Max. | Units | | V _{IN} Under Voltage Lockout Threshold | V _{IN_UVLO} | V _{IN} rising | 2.3 | 2.45 | 2.55 | V | | V _{IN} Under Voltage Lockout Hysteresis ⁵⁾ | VIN_UVLO_HYST | V _{IN} falling | | 200 | | mV | | V _{IN} Over Voltage Protection Threshold | V _{IN_OVP} | VIN rising | 6.6 | 6.88 | 7.1 | V | | V _{IN} Over Voltage Protection Hysteresis ⁵⁾ | V _{IN_OVP_HYST} | VIN falling | | 360 | | mV | | Shutdown Current | Ishdn | V _{EN} =0V | | 0.1 🄷 | 4.7 | μA | | Quiescent Current | IQ | V _{EN} =5V, I _{OUT} =0A, V _{FB} =V _{REF} *105% | | 60 | 80 | μA | | Regulated Feedback Voltage | V _{FB} | 2.5V <v<sub>IN<6V</v<sub> | 0.588 | 0.6 | 0.612 | V | | PFET On Resistance ⁵⁾ | RDSON_P | VIN=3.6V,
Isw=200mA | N | 110 | | mΩ | | NFET On Resistance ⁵⁾ | Rdson_n | VIN=3.6V,
Isw=-200mA | | 90 | | mΩ | | PFET Leakage Current | ILEAK_P | V _{IN} =5.5V, V _{EN} =0V,
V _{SW} =0V | | 0.1 | 1 | uA | | NFET Leakage Current | ILEAK_N | V _{IN} =5.5V, V _{EN} =0V,
V _{SW} =5.5V | | 0.1 | 1 | uA | | PFET Current Limit ⁵⁾ | ILIM_TOP | | 3.2 | 3.7 | 4.3 | Α | | Switch Frequency | Fsw | Іоит=1А | 0.8 | 1 | 1.2 | MHz | | Minimum On Time ⁵⁾ | T _{ON_MIN} | | | 70 | | ns | | Maximum Duty Cycle ⁵⁾ | D _{MAX} | | | 75 | | % | | EN Input Logic High Voltage ⁵⁾ | V _{EN_} H | V _{EN} rising, FB=0.4V | 1.5 | | | V | | EN Input Logic Low Voltage ⁵⁾ | V _{EN_L} | V _{EN} falling, FB=0.4V | | | 0.4 | V | | POK Low Threshold | VPOKL | V _{FB} falling | 500 | 525 | 550 | mV | | POK High Threshold | Vрокн | V _{FB} rising | 660 | 695 | 730 | mV | | Thermal Shutdown Threshold ⁵⁾ | T _{SHDN} | | | 150 | | $^{\circ}$ | | Temperature Hysteresis ⁵⁾ | T _{HYS} | | | 15 | | °C | # Note: 5) Guaranteed by design. # **PIN DESCRIPTION** | SOT23-6
Pin | Name | Description | |----------------|------|--| | 1 | EN | Drive EN pin high to turn on the regulator and low to turn off the regulator. | | 2 | GND | Ground pin. | | 3 | SW | SW is the switching node that supplies power to the output. Connect the output LC filter from SW to the output load. | | 4 | VIN | Input voltage pin. VIN supplies power to the IC. Connect a 2.5V to 6V supply to VIN and bypass VIN to GND with a suitably large capacitor to eliminate noise on the input to the IC. | | 5 | POK | Open drain output. Connect a $10K\Omega$ resistor from POK to output. POK is high when V_{FB} is within +/-12.5% of V_{REF} . | | 6 | FB | Output feedback pin. FB senses the output voltage and is regulated by the control loop to 0.6V. Connect a resistive divider at FB. | # **BLOCK DIAGRAM** ### TYPICAL PERFORMANCE CHARACTERISTICS Vin = 5V, Vout = 1.8V, L = $2.2\mu H$, Cout = $44\mu F$, TA = +25°C, unless otherwise noted #### **Steady State Test** VIN=5V, Vout=1.8V lout=2.5A #### Startup through Enable VIN=5V, Vout=1.8V lout=2.5A(Resistive load) #### Shutdown through Enable VIN=5V, Vout=1.8V lout=2.5A(Resistive load) #### **Heavy Load Operation** 2.5A LOAD #### **Medium Load Operation** 1.25A LOAD ## **Light Load Operation** 0 A LOAD #### **Short Circuit Protection** VIN=5V, Vout=1.8V lout=2.5A- Short #### **Short Circuit Protection** VIN=5V, Vout=1.8V Iout= 2.5A -Short #### **Load Transient** $1.25A LOAD \rightarrow 2.5A LOAD$ →1.25A LOAD # TYPICAL PERFORMANCE CHARACTERISTICS (continued) Vin = 5V, Vout = 1.8V, L = $2.2\mu H$, Cout = $44\mu F$, TA = +25°C, unless otherwise noted ### **FUNCTIONAL DESCRIPTION** The JW5222N is a synchronous, current-mode, step-down regulator. It regulates input voltages from 2.5V~6V down to an output voltage as low as 0.6V, and is capable of supplying up to 2.5A of load current. #### **Current-Mode Control** The JW5222N utilizes current-mode control to regulate the output voltage. The output voltage is measured at the FB pin through a resistive voltage divider and the error is amplified by the internal transconductance error amplifier. Output of the internal error amplifier is compared with the switch current measured internally to control the output current limit. #### **PFM Mode** The JW5222N operates in PFM mode at light load. In PFM mode, switch frequency is continuously controlled in proportion to the load current, i.e. switch frequency decreases when load current drops to boost power efficiency at light load by reducing switch-loss, while switch frequency increases when load current rises, minimizing output voltage ripples. #### **Shut-Down Mode** The JW5222N operates in shut-down mode when voltage at EN pin is driven below 0.4V. In shut-down mode, the entire regulator is off and the supply current consumed by the JW5222N drops below 1uA. #### **Power Switches** P-channel and N-channel MOSFET switches are integrated on the JW5222N to down convert the input voltage to the regulated output voltage. #### **Output Current Run-Away Protection** At start-up, due to the high voltage at input and low voltage at output, current inertia of the output inductance can be easily built up, resulting in a large start-up output current. A valley current limit is designed in the JW5222N so that only when output current drops below the valley current limit can the bottom power switch be turned off. By such control mechanism, the output current at start-up is well controlled. #### **Short Circuit Protection** When output is shorted to ground, the switching frequency is reduced to prevent the inductor current from increasing beyond PFET current limit. If short circuit condition holds for more than 1024 cycles, both PFET and NFET are forced off and can be enabled again after 8mS. This procedure is repeated as long as short circuit condition is not removed. #### FB Short Circuit Protection When FB is shorted to ground and holds for more 16 cycles, NFET will be turned off after inductor current drops to zero, and then both PFET and NFET are latched off. Only toggling EN or VIN UVLO/OVP can PFET and NFET be enabled again. ### **Hot-Plug In Protection** If the Vin voltage exceeds 6.85V, IC will turn off power switch, entering over-voltage protection. It will remain in this state until Vin voltage is less than 6.5V. #### Thermal Protection When the temperature of the JW5222N rises above 150°C, it is forced into thermal shut-down. Only when core temperature drops below 130°C can the regulator becomes active again. ### **APPLICATION INFORMATION** ### **Duty Cycle Limit** The JW5222N does not support to work more than 75% duty cycle. The input and output voltages should meet the following condition: $$D = \frac{V_{\text{OUT}}}{V_{\text{IN}}} \le 75\%$$ ### **Output Voltage Set** The output voltage is determined by the resistor divider connected at the FB pin, and the voltage ratio is: $$V_{FB} = V_{OUT} \cdot \frac{R_3}{R_2 + R_3}$$ where $\ensuremath{\mathsf{VFB}}$ is the feedback voltage and $\ensuremath{\mathsf{VOUT}}$ is the output voltage. Choose R₃ around $10k\Omega$, and then R₂ can be calculated by: $$R_2 = R_3 \cdot \left(\frac{V_{OUT}}{0.6V} - 1 \right)$$ The following table lists the recommended values. | | | L A / | |---------|--------|--------| | Vout(V) | R2(kΩ) | R3(kΩ) | | 1.0 | 6.8 | 10.2 | | 1.2 | 10.2 | 10.2 | | 1.8 | 20.5 | 10.2 | | 2.5 | 31.6 | 10 | | 3.3 | 49.9 | 11 | # **Input Capacitor** The input capacitor is used to supply the AC input current to the step-down converter and maintaining the DC input voltage. The ripple current through the input capacitor can be calculated by: $$I_{C1} = I_{LOAD} \cdot \sqrt{\frac{v_{OUT}}{v_{IN}} \cdot \left(1 - \frac{v_{OUT}}{v_{IN}}\right)}$$ where ILOAD is the load current, Vout is the output voltage, VIN is the input voltage. Thus the input capacitor can be calculated by the following equation when the input ripple voltage is determined. $$c_1 = \frac{I_{LOAD}}{f_s \cdot \Delta v_{IN}} \cdot \frac{v_{OUT}}{v_{IN}} \cdot \left(1 - \frac{v_{OUT}}{v_{IN}}\right)$$ where C1 is the input capacitance value, fs is the switching frequency, $\triangle VIN$ is the input ripple current. The input capacitor can be electrolytic, tantalum or ceramic. To minimizing the potential noise, a small X5R or X7R ceramic capacitor, i.e. 0.1uF, should be placed as close to the IC as possible when using electrolytic capacitors. A 22uF ceramic capacitor is recommended in typical application. ### **Output Capacitor** The output capacitor is required to maintain the DC output voltage, and the capacitance value determines the output ripple voltage. The output voltage ripple can be calculated by: $$\Delta V_{OUT} = \frac{V_{OUT}}{f_{s} \cdot L} \cdot \left(1 - \frac{V_{OUT}}{V_{IN}}\right) \cdot \left(R_{ESR} + \frac{1}{8 \cdot f_{s} \cdot C_{2}}\right)$$ where C₂ is the output capacitance value and RESR is the equivalent series resistance value of the output capacitor. The output capacitor can be low ESR electrolytic, tantalum or ceramic, which lower ESR capacitors get lower output ripple voltage. The output capacitors also affect the system stability and transient response, and 22uF ~ 22uFx2 ceramic capacitor are recommended in typical application. #### Inductor The inductor is used to supply constant current to the output load, and the value determines the ripple current which affect the efficiency and the output voltage ripple. The ripple current is typically allowed to be 40% of the maximum switch current limit, thus the inductance value can be calculated by: $$L = \frac{V_{OUT}}{f_{s} \cdot \Delta I_{L}} \cdot \left(1 - \frac{V_{OUT}}{V_{IN}}\right)$$ where VIN is the input voltage, VOUT is the output voltage, fs is the switching frequency, and $\triangle IL$ is the peak-to-peak inductor ripple current. ### **PCB Layout Note** For minimum noise problem and best operating performance, the PCB is preferred to following the guidelines as reference. - Place the input decoupling capacitor as close to JW5222N (VIN pin and PGND) as possible to eliminate noise at the input pin. The loop area formed by input capacitor and GND must be minimized. - 2. Put the feedback trace as far away from the inductor and noisy power traces as possible. - 3. The ground plane on the PCB should be as large as possible for better heat dissipation. ### REFERENCE DESIGN ### Reference 1: V_{IN}: 2.5V ~ 6V V_{OUT}: 1V I_{OUT}: 0~2.5A ### Reference 2: V_{IN} : 2.5V ~ 6V V_{OUT} : 1.8V I_{OUT} : 0~2.5A ### Reference3: V_{IN} : 4.5V ~ 6V V_{OUT} : 2.5V I_{OUT} : 0~2.5A ### Reference 4: V_{IN} : 4.5V ~ 6V V_{OUT} : 3.3V I_{OUT} : 0~2.5A # TAPE AND REEL INFORMATION ### **PACKAGE OUTLINE** ### **IMPORTANT NOTICE** Joulwatt Technology Inc. reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. - Any unauthorized redistribution or copy of this document for any purpose is strictly forbidden. - Joulwatt Technology Inc. does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Copyright © 2018 JW5222N Incorporated. All rights are reserved by Joulwatt Technology Inc.